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The nonnegative Boltzmann machine (NNBM) is a recurrent neural
network model that can describe multimodal nonnegative data. Application
of maximum likelihood estimation to this model gives a learning rule that is
analogous to that of the binary Boltzmann machine. While the model itself
is analytically intractable an efficient stochastic version of the learning rule
can be obtained using reflective slice sampling, since the slice boundaries can
be determined analytically from the model. We compare this with the use of
advanced mean field theory to learn a generative model for face image data.

1. Introduction. The multivariate Gaussian is the most elementary distribu-
tion used to model generic data. It represents the maximum entropy distribution
under the constraint that the mean and covariance matrix of the distribution match
that of the data. For the case of binary data, the maximum entropy distribution that
matches the first- and second-order statistics of the data is given by the Boltzmann
machine [Hinton and Sejnowski (1983)].

The Boltzmann machine can be generalized to continuous and nonnegative
variables [Downs, MacKay and Lee (2000)]. In this case, the maximum entropy
distribution for nonnegative data with known first- and second-order statistics is
described by the nonnegative Boltzmann distribution (NNBD),

P (x) =



1

Z
exp [−E(x)], if xi ≥ 0 ∀ i,

0, if any xi < 0,
(1)

where the energy function E(x) and normalization constant Z are

E(x) = βxT Ax − bT x,(2)

Z =
∫
x≥0

dx exp[−E(x)].(3)

The properties of the NNBD differ quite substantially from the Gaussian
distribution which would arise for continuous, unbounded data. In particular, the
presence of the nonnegativity constraints allows the distribution to have multiple
modes, confined to the rectifying axes, since A can be nonpositive definite. Such
a distribution would be poorly modeled by a single Gaussian. Here, we describe
how a multimodal NNBD can be learned from nonnegative data.
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2. Maximum likelihood. The learning rule for the NNBM can be derived
by maximizing the log probability of the observed data under (1). Given a set of
nonnegative vectors {xµ}, where µ = 1 · · ·M indexes the different examples, the
log probability is

L = 1

M

M∑
µ=1

logP (xµ) = − 1

M

M∑
µ=1

E(xµ) − logZ.(4)

Taking the derivatives of (4) with respect to the parameters A and b gives

∂L

∂Aij

= 〈xixj 〉f − 〈xixj 〉c,(5)

∂L

∂bi

= 〈xi〉c − 〈xi〉f,(6)

where the subscript “c” denotes a “clamped” average over the data, and the
subscript “f” denotes a “free” average over the NNBM distribution

〈f (x)〉c = 1

M

M∑
µ=1

f (xµ), 〈f (x)〉f =
∫
x≥0

dxP (x)f (x).(7)

These derivatives are used to define a gradient ascent learning rule for the NNBM.
The contrast between the clamped and free covariance matrix is used to update the
interactions A, while the difference between the clamped and free means is used
to update the local biases b.

3. Mean-field theories. It is possible to obtain approximations to the statistics
of the model and to learn approximate parameters from data using concepts from
mean-field theory. In (2) the (inverse) temperature parameter, β , controls the
influence of correlations in the model. It is possible to approximate expectations
under the model distribution in the limit that these correlations are assumed weak,
the “high temperature” limit, at which β = 0. Since E(x) is linear in this limit,
integrals over the NNBD are tractable; we then accomodate small nonzero β by
Taylor expansion about β = 0 [Downs (2001)].

To first order in β this approach returns the “naive” mean-field approximation,
equivalent to approximating the NNBD with a factorized product of one-
dimensional exponential distributions, with means matching that of the data. This
replaces the “free” correlations in (5) with

〈xixj 〉f = (1 + δij )〈xi〉c〈xj 〉c.(8)

Then expanding second-order in β we obtain a TAP-like [Kappen and
Rodriguez (1998)] correction to this approximation,

�〈xixj 〉f = −β

2

∑
kl

αijklAijAkl〈xi〉c〈xj 〉c〈xk〉c〈xl〉c.(9)
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4. Monte Carlo sampling. A direct approach to calculating the “free”
averages in (5) and (6) is to numerically approximate them. This can be accom-
plished by generating samples from the NNBD using a Markov chain Monte Carlo
method. Such methods employ an iterative stochastic dynamics whose equilibrium
distribution converges to that of the desired distribution [MacKay (1998)].

Gibbs sampling from such a distribution requires repeated evaluation of the
error function erf(z), and hence is prone to numerical error or high computational
cost. The method of reflective slice sampling [Neal (1997)] circumvents this.

The basic idea of the reflective slice sampling algorithm is shown in Figure 1.
Given a sample point xi , a random y ∈ [0,P ∗(xi)] [where P ∗(x) is the
unnormalized density] is first chosen uniformly. Then a slice S is defined as
the connected set of points (x ∈ S | P ∗(x) ≥ y) including xi , and the new point
xi+1 ∈ S is chosen randomly from this slice.

In order to efficiently choose a new point within a particular multidimensional
slice, reflective “billiard ball” dynamics are used. A random initial direction in the
slice, p is chosen, and the new point is evolved by traveling a predefined distance
from the current point along the path specularly reflecting from the boundaries of
the slice.

For the NNBM, solving the boundary points along a particular direction in a
given slice is quite simple, since it only involves solving the roots of a quadratic
equation,

βxT Ax − bT x − logy = 0,(10)

along the line defined by the momentum vector, p, bounding the points by the

FIG. 1. Reflective slice sampling in two dimensions. Given the current sample point, x0, a height
y ∈ [0,P ∗(x0)] is randomly chosen. This defines a slice (x ∈ S | P ∗(x) ≥ y) in which a new x1 is
chosen, using billiard-ball dynamics with specular reflections from the interior boundaries of the
slice.
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FIG. 2. (a) Contours of the two-dimensional “competitive” NNBD overlaid by 500 reflective slice
samples from the distribution. (b) Prototype face images generated from a mean-field NNBM.
(c) Prototype face images generated from an NNBM learned via reflective slice sampling.

rectifying axes,

xboundary =
[−b ± √

b2 − 4ac

2a

]+
,(11)

where + denotes rectification. The reflected momentum direction is a simple
function of the incident momentum and the gradient of the slice boundary, g,

p′ = p − 2g
p · g
|g|2 with g = 2βAx − b.(12)

The distribution of xn for large n can be shown to converge to the desired density
P (x). Figure 2a demonstrates this for a two-dimensional NNBD.

5. Generative model for faces. We have used the NNBM to learn a
generative model for images of human faces. The NNBM is used to model the
correlations in the coefficients of the nonnegative matrix factorization (NMF)
of the face images [Lee and Seung (1999)]. NMF reduces the dimensionality
of nonnegative data by decomposing the face images into parts correponding to
eyes, noses, ears, etc. Since the different parts are coactivated in reconstructing
a face, the activations of these parts contain significant correlations that need to
be captured by a generative model. Here we briefly demonstrate how the NNBM
is able to learn these correlations, comparing the mean-field and reflective slice
sampling approaches described above.

Sampling from the learned NNBD stochastically generates coefficients which
can graphically be displayed as face images. Figure 2b and 2c compare prototype
face images from NNBDs learned using advanced mean-field theory and reflective
slice sampling, respectively. We suggest that the latter produces the more plausible
prototypes.
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6. Discussion. Here we have demonstrated the application of reflective
slice sampling to NNBM learning. Since the NNBM learning rule is generally
intractable, approximations are required to enable efficient learning. The use
of reflective slice sampling is seen to be a reasonable alternative to mean-field
approaches for learning the model, and can be implemented efficiently since slice
boundaries and reflections can be determined analytically.

Extensions to the present work include incorporating hidden units into the
recurrent network, which would imply modeling higher-order statistics of the data.
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