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Distributions
» Maximum Entropy for nonnegative data

* ‘Advanced’ Mean Field Theory for the NNBM
» TheMean Field NNBM with Hidden Units
» Testing and Application

* Orientation Tuning in Visual Cortex

* Summary
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» Probabilistic Data Modeling and Maximum Entropy

» The Nonnegative Boltzmann Machine (Downs, MacKay & Lee, 2000)

» The Nonnegative Matrix Factorisation and Models for Human Faces
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(Hopfield, Ackley et. a.)
» The symmetric neural network is ahighly ssimplified model of

associative memory.

* Itis‘taught’ in a Hebbian fashion, forming the synaptic weights of
the network. (We consider binary neurons here). | T, ~ correlatio(V,,V,)

oT :<VVT>memories
* The'neurons’ obey the dynamical equations (V;=sign(u,) here)
U =-u, +ZTV +1,

7]
* |t has been shown that these dynarnlcs minimise the Lyapunov

Function 1
_E ZTU\/|V1 + Z A
* The Lyapunov Function definesan energy’ for al 2N possible

binary configurations, under the prevailing T;;
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» We can therefore define a probabil ity distribution over all the
states 1 2 _
Ta) expL(x)) = Ta) exp%x TXB
with Z = z exp(-L(x))

allbinary
configsof x

¢ ThisisaBoltzmann Distribution

* Note: When we have deterministically settled into the state
which minimises L we have found the state with the greatest
probability under this Boltzmann Distribution

* Moving away from the deterministic neural dynamics to the
stochastic rule

« Compute @; = Z

e Then set

P(x) =

iV (the change in energy on flipping u;)

u; =—u; with probability %+ expEbL %lwherek "Temperatug"
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Deterministic Networks to Boltzmann
Machines

» The stochastic dynamics visits different configurations of the
system with frequency given by the Boltzmann distribution

* The Probability model gives us a means of learning T;,

» The patterns{V} weideally wish to store define a probability
distribution over al configurations of the network Q(x)

* We want to match P(x) to the probability distribution of the
patterns.

» We can derive alearning rule by performing gradient descent
w.r.t. T on the Kullback-Leibler distance

__ - P V(m)
D(QlIP)=~ 5 Qv )|09%H/(m)
Enabling the future
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(Ackley et. al.)
* Thuswe havealearning rulefor T
_1 T T O
AT -EEXX ) patens™ X et
\
1Y T
<xxT> == 5 vmym
patterns M =
#binary
configs T )
<XXT >al|binary = X(I)X(I) P(X(I)) = <XXT>
configs = free
“ Learning Models for Continuous Nonnegative Data E"'ED“Q%;DS Latarere
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Why make prohabilistic models of data?

» How do we use our learned generative model ?
« Sampling from the model generates new prototype data

» Can perform probabilistic completion of partial data
X X
2) 2

= | ||=

1 % )
X, Xy p(%, X))

» We can also use the model for recognition, by considering
the ‘log-likelihood' In p(x|V®)> Threshold
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Maximum Entropy Data Modeling

» Consider the abstract problem of selecting a natural probability
model to capture different classes of data.

» Consider the ‘least-committal’ model, the maximum entropy
model, and constrain it to match certain statistics of the data.

» Simple Lagrange multiplier problem
r&g{[— p(x)log p(x)dx —A® - - —...
) :I p(x)dx -1
r :pr(x)dx—u, pis themeanof thedata

W :J’xxT p(x)dx —C, Cis thedatacross correlation matrix

» We simply attempt to match 1st and 2nd order statistics

e? Learning Models for Continuous Nonnegative Data i, ';‘,%;D;h’?;m‘;t,g,.h
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Maximum Entropy Data Modeling Contd.

 For continuous, unbounded data p(x) is Gaussian.

 For binary data the maximum-entropy distribution isthe
Boltzmann Distribution with quadratic energy.

e Thisisindeed the probability distribution learned and explored by the
Boltzmann Machine.
e The Boltzmann Machine learns the maximum entropy probability
distribution of binary data based upon 1st and 2nd order statistics.
 For continuous data bounded to the nonnegative orthant the

distribution is the Nonnegative Boltzmann Distribution

1 T T
Ee‘““*“,m 20
p(x) =
0, otherwise
@9 Learning Models for Continuous Nonnegative Data E“ab“&%ﬂg{ﬁ%ﬂgﬁoﬁ‘
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(b)

Xy 55 %1
Surface plot Contour plot
2
A= b=
1
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The Nonnegative Boltzmann Machine

O max In p({V}|Parameter}

Parameters

0
0 I’Y;%XHEXTAX +b"x~In ZH xO{V}

(Downset. d.)
* S0 how do we learn the NNBD to best represent some set of
nonnegative data{V}?
» Search for maximum likelihogd parameters, giyen the data,
under the assumption that p@V? | Paramete NNBD
* Bayes
_ Op{Vv}| Parametergp(Parametery]
max[p{parameters{v}] = max - ool -

function
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* We perform Gradient Ascent to maximise this log-likelihood

Enabling the future

through innovation.

The NNBM Contdl.

» Learning rules, (cf. Boltzmann Machine)

DA :”A% =1a %V("’)V("’)T >a —<xxT>fr6e5

() - (V) |

oL
b

Ab =, —==n,

« Learningismadehardby (_), .
Gaussian integral over the nonnegative orthant.
* Ways ahead
* Integrate
¢ Mean-Field/Variational Approximation
* Markov Chain Monte-Carlo methods
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which is a multidimensional

Enabling the future

through innovation.
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Practical Implementation
* Why not integrate?

» Consider ® b . 0 OH
M a ... 0 0O
-0 - o0 i
A—D. : Lo .DW|thb>a
M 0 --- a bO

N
« Thisdefines arectified Gaussian distribution with 2 /Zmodas

» Hard to integrate efficiently if we must first find the modesin a high-
dimensiona space.

» Use of Mean-Field Approximation
« Allows analytic approximate solutions for A,b
¢ Fundamental assumption - factorisability of the model density

1 X

X) = —eX —
o= o
@ e Factorised fit density is unimodal e

Learning Models for Continuous Nonnegative Data through innovation.
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Practical Implementation
* Markov Chain Monte-Carlo Sampling
* Problem isto generate aset of ‘data’ representative of the
topography of the probability density.
» Develop dynamics satisfying detailed balance, s.t. evolving

random points asymptotically produces samples
characterising the probability density

Detailedbalance:T (x, | X, )P(x,) = T(x, | %, )P(x,)

* For NNBD
¢ Gaussianity of conditional densities
e Quadratic L(x)
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Reflective Slice Sampling (Neal 1997)
From starting point, x, pick slice at random
P height in [0, p"(xo)]

Connected Slice

\ T T
Choose random momentum, p bouncing randomly
g = gradientof contourboundary from slice boundaries over path length, t
p’=p- 29@
9

Enabling the future

@9 Learning Models for Continuous Nonnegative Data through innovation.
s 4] 15 Research
MFT and Monte-Carlo Comparison

a) b)
1 Mean-Field 200 Reflective Slice
roximationisa o Samples from the
dal density J NNBM dist. in 2d
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Advanced Mean Field Theory for the NNBM

* The nature of the ML learning rule, suggests parameters are
expressibleas  f((v),(vv"))

» Confident some useful deterministic theory exists

» High Temperature Expansions (Georges & Y edidia 1995)
» Consider the ‘Free Energy’

~AG(B.m)=In[] [, exgr A3 XA j—zai(ﬁ)(x—m)g

» Compare thiswith Z the normalisation of the NNBD

InZ =-pG(B,m) +Constant
with b = -1,(8)
ancim =(4°)
Learning Models for Cor1lti7nuous Nonnegative Data Er"ab'i&%ﬂg{ﬁ;":é:;

Advanced Mean Field Theory for the NNBM

e Theterm z A (B)(x —m) enforcesthe Lagrange constraint that the
‘mean-field’ of the system, matches the ‘ mean-field' of the patterns (cf. 2nd
part of NNBM learning rule) (V)

 In high-temperature limit (5=0) the local interactions in the system vanish

» Wesolve for the Lagrange multipliers by explicitly forcing the constraint

|_| Idxkxi ex% Z A, (B)(x; —m, )E
k
m = <)q >free = <Xl >free,[3:0 = Ooo : = A (O)
|'”d><k exp% z/lj (B)(x, - mj)E '
k™0 ]
¢ Weconsider Taylor expansion of -G about =0
o(— 2 0(-
- po(p.m) = -po(o,my+ p 2R BOCHS)
B B=0 2 0B B=0
“ Learning Models for Continuous Nonnegative Data Eizo oo [ fulere o
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Advanced Mean Field Theory for the NNBM
e Thefirst derivative, reproduces the naive MFT
s N [ AR =3 05 =m) 3% el 5 A8 -m)f
% e M [ o5 480 -m)
=3 @+9)Amm,

e Thesecond derivative is of the same order as the TAP-Onsager term for the
Ising model/Boltzmann Machine (Kappen & Rodriguez, 1997)

2(-5G) i
032 ﬁ_o—@zmxj E>M HZ(lmij)Ajmmjé

Qg Ay Aymm;mm
ikl
@9 Learning Models for Continuous Nonnegative Data E"'ﬁ““gl?r;rjg et
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Advanced Mean Field Theory for the NNBM

* Weareinterested in approximating

__0InZ __d(-p0)
<)g Xj >free - aAJ aAj

¢ From the high-temperature expansion, we obtain

<Xixj>free: (1+9;)mm, _ﬁganm A,mmmm,

* We can substitute this into the learning rule, and either
« solvedirectly for A setting AA=0
 |terate the learning rule
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Advanced Mean Field Theory for the NNBM

Training Data AMFT NNBM Model Density
Xz
8
aft
0 B et STt
0 4

5&"-’
A g@ %

B
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The Mean Field NNBM with Hidden Units

» With the Stochastic learning rule, we have to sample for
both the clamped and free learning phases

» Using the Mean Field theory, we can totally avoid sampling,
after some simple assumptions

Hidden Layer h

Visblelayer x ()
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The Mean Field NNBM with Hidden Units

» Recall thelearning rule

DA =1, % =1a gv @y @7 >a —<xxT > freeg

* With hidden units we have

Ap = VOV V@R /3 xhT
hv@'  hh' hx" hh'/,
a patternsh free ree

* For the mean-field case we assume

» The hidden units form a distributed representation of the data - hence
their mean-fields are equal and constant in the ‘free' phase

* Inthe‘clamped phase the hidden units are restrained by the
clamping of the visible ones, and explore an ensemble adequately
characterised by ‘backpropagation’ of the patterns

<h h’ >clamped = <(W Ve )(W e )T > ! <hV « >a patterns: <(W A )V @ >

a patterns

a patterns
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Orientation Tuning in Visual Gortex
* Model of Ben-Yishai et al. (1995) has parameters which map
directly onto aNNBD
1 4
A =9, +ﬁ—ﬁcos(9i _gi)’q =1
» Trained on stable activation patterns of their model, NNBM
captures parameter set for the data, and can generate valid
activity patterns

z
2
°
<
5 10 1 20 2 5 10 15 20 2
2
>
B
<
5 10 15 20 25 5 10 15 20 25
e? Learning Models for Continuous Nonnegative Data Eizo oo [ fulere o
&W 24 Research

12



Learning Models for Continuous Nonnegative Data April 18th 2000
Olly Downs, Hopfield Group

Hierarchical Nonnegative Models

* We build a hierarchical nonnegative computing structure by
Combining NNBM with Nonnegative Matrix Factorisation

(Lee & Seung ‘99)
AN

Hidden Layer h NNBM models correlations
W within the basis coefficients

Visiblelayer  x ()

» NMPF learns a nonnegative factorisation of the dataset such that
Wh =x
« Nonnegative coefficients, nonnegative basis
* Basisof ‘qualitative features of the data (cf. PCA/ISVD, VQ)

* Use NNBM on the set of hidden layer coefficients, to learn the
valid coactivations of basis features (columns of W)

Learning Models for Continuous Nonnegative Data E"'E'“"Q,?r;{];{?,‘{,ﬁ;';:m,.,‘

A 49 2 Ko
Hierarchical Nonnegative Models
* NMF Basisfor database of face images
o—
= — — = ——
-
—
] — ;
|
==
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correlations between NMF coefficients

fomg = i mp—

4 gt

x b -
“ipifif%@ i:f.—.::‘a'ﬁ. -
i o -
E ",. it il s e =
e _:ig_?-"ré_?;:f‘g Ek_.‘:‘ _:,‘;1

a) Samples from NNBM distribution,
trained on human faces.
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e Compare NNBM performance, with (unrectified) Gaussian in learning

¢ Sampling from the NNBM model generates more plausible prototypes, as
compared with samples from the unimodal Gaussian fit to the data.

Enabling the future
through innovation.

Research

binary data
maximum entropy model for the data- NNBD
learning of the NNBD for a given set of data

NNBD, Naive Mean-Field theory fails

computation with hidden units

interpretable model for continuous nonnegative data

[ ]
“ Learning Modelsfor Continuous Nonnegative Data
AL 28

* View of Boltzmann Machines as learning a probabilistic model for

* Bounding to the nonnegative orthant makes drastic changes to the

» The NNBM describes the framework for maximum-likelihood

» Efficient (but still low) MCMC can be implemented to sample the

» The high-temperature expansion allows corrections of arbitrarily
high order and may lead to deterministic NNBM learning

* Under simple assumptions the AMFT can be applied to

Work continues in transforming the NNBM into a useable and

Enabling the future
through innovation.
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Future Work
» High-dimensional application using advanced mean-field
theory - inferring super-resolution images
* Interpretable nonnegative feature extraction under the
NNBD as probabilistic model (cf. Gaussian model for PCA)
» Application with Hidden Units
» Linear Response Theory (with Bert Kappen)

* Mixed-constraint latent variable models (with David Barber)
« Additive combination of parts generative models for continuous

data
e Gaussian visible units + NNBD over hidden units (application to
DNA Array data?)
» Learning models via continuous-time dynamics
@9 Learning Models for Continuous Nonnegative Data E’“““gﬁ;ﬂg et
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Cognitive Science 9:147-169 (1985)
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Enabling the future
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