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• Probabilistic Data Modeling and Maximum Entropy
Distributions

• Maximum Entropy for nonnegative data

• The Nonnegative Boltzmann Machine (Downs, MacKay & Lee, 2000)

• ‘Advanced’  Mean Field Theory for the NNBM

• The Mean Field NNBM with Hidden Units

• Testing and Application
• Orientation Tuning in Visual Cortex

• The Nonnegative Matrix Factorisation and Models for Human Faces

• Summary
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• The symmetric neural network is a highly simplified model of
associative memory.

• It is ‘ taught’  in a Hebbian fashion, forming the synaptic weights of
the network. (We consider binary neurons here).

• The ‘neurons’  obey the dynamical equations (Vj=sign(uj) here)

• It has been shown that these dynamics minimise the Lyapunov
Function

• The Lyapunov Function defines an ‘energy’  for all 2N possible
binary configurations, under the prevailing Tij
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• We can therefore define a probability distribution over all the
states

• This is a Boltzmann Distribution

• Note: When we have deterministically settled into the state
which minimises L we have found the state with the greatest
probability under this Boltzmann Distribution

• Moving away from the deterministic neural dynamics to the
stochastic rule
• Compute (the change in energy on flipping ui)

• Then set
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• The stochastic dynamics visits different configurations of the
system with frequency given by the Boltzmann distribution

• The Probability model gives us a means of learning Tij

• The patterns { V}  we ideally wish to store define a probability
distribution over all configurations of the network

• We want to match       to the probability distribution of the
patterns.

• We can derive a learning rule by performing gradient descent
w.r.t. T on the Kullback-Leibler distance
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• Thus we have a learning rule for T
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• How do we use our learned generative model?

• Sampling from the model generates new prototype data

• Can perform probabilistic completion of partial data
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• We can also use the model for recognition, by considering
the ‘ log-likelihood’ ( ) Threshold|ln )( >ip Vx
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• Consider the abstract problem of selecting a natural probability

model to capture different classes of data.

• Consider the ‘ least-committal’  model, the maximum entropy
model, and constrain it to match certain statistics of the data.

• Simple Lagrange multiplier problem

• We simply attempt to match 1st and 2nd order statistics
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• For continuous, unbounded data p(x) is Gaussian.

• For binary data the maximum-entropy distribution is the
Boltzmann Distribution with quadratic energy.
• This is indeed the probability distribution learned and explored by the

Boltzmann Machine.

• The Boltzmann Machine learns the maximum entropy probability
distribution of binary data based upon 1st and 2nd order statistics.

• For continuous data bounded to the nonnegative orthant the
distribution is the Nonnegative Boltzmann Distribution
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• So how do we learn the NNBD to best represent some set of
nonnegative data { V} ?

• Search for maximum likelihood parameters, given the data,
under the assumption that

• Bayes

• We perform Gradient Ascent to maximise this log-likelihood
function
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• Learning rules, (cf. Boltzmann Machine)

• Learning is made hard by which is a multidimensional
Gaussian integral over the nonnegative orthant.

• Ways ahead
• Integrate

• Mean-Field/Variational Approximation

• Markov Chain Monte-Carlo methods
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• Why not integrate?

• Consider

• This defines a rectified Gaussian distribution with        modes.

• Hard to integrate efficiently if we must first find the modes in a high-
dimensional space.
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• Use of Mean-Field Approximation
• Allows analytic approximate solutions for A,b

• Fundamental assumption - factorisability of the model density

• Factorised fit density is unimodal
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• Markov Chain Monte-Carlo Sampling

• Problem is to generate a set of ‘data’  representative of the
topography of the probability density.

• Develop dynamics satisfying detailed balance, s.t. evolving
random points asymptotically produces samples
characterising the probability density

• For NNBD
• Gaussianity of conditional densities

• Quadratic L(x)
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Reflective Slice Sampling (Neal 1997)

x0

2
2’

boundarycontour  ofgradient 

g

gp
gpp

g

⋅−=

=

x0

From starting point, x0 pick slice at random
height in [0, p*(x0)]p*(x)

p
p’

x1

x0

          Connected Slice

Choose random momentum, p bouncing randomly
from slice boundaries over path length, t

x0

Learning Models for Continuous Nonnegative Data
16

A0BDCFE�G;HIA0J�G�K�LNMDO1E�P�Q�J=O1J�RTS;E�P�UWVXJ�G

a) b)
Mean-Field

approximation is a
unimodal density

200 Reflective Slice
Samples from the
NNBM dist. in 2d
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• The nature of the ML learning rule, suggests parameters are

expressible as

• Confident some useful deterministic theory exists

• High Temperature Expansions (Georges & Yedidia 1995)

• Consider the ‘Free Energy’

• Compare this with Z the normalisation of the NNBD
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• The term enforces the Lagrange constraint that the

‘mean-field’  of the system, matches the ‘mean-field’  of the patterns (cf. 2nd
part of NNBM learning rule)

• In high-temperature limit (β=0) the local interactions in the system vanish

• We solve for the Lagrange multipliers by explicitly forcing the constraint

• We consider Taylor expansion of -βG about β=0
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• The first derivative, reproduces the naive MFT

• The second derivative is of the same order as the TAP-Onsager term for the
Ising model/Boltzmann Machine (Kappen & Rodriguez, 1997)
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• We are interested in approximating

• From the high-temperature expansion, we obtain

• We can substitute this into the learning rule, and either

• solve directly for A setting ∆Α=0
• Iterate the learning rule
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• With the Stochastic learning rule, we have to sample for

both the clamped and free learning phases

• Using the Mean Field theory, we can totally avoid sampling,
after some simple assumptions
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• Recall the learning rule

• With hidden units we have

• For the mean-field case we assume
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• The hidden units form a distributed representation of the data - hence
their mean-fields are equal and constant in the ‘ free’  phase

• In the ‘clamped’  phase the hidden units are restrained by the
clamping of the visible ones, and explore an ensemble adequately
characterised by ‘backpropagation’  of the patterns
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• Model of Ben-Yishai et al. (1995) has parameters which map

directly onto a NNBD

• Trained on stable activation patterns of their model, NNBM
captures parameter set for the data, and can generate valid
activity patterns
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• We build a hierarchical nonnegative computing structure by

Combining NNBM with Nonnegative Matrix Factorisation
(Lee & Seung ‘99)

• NMF learns a nonnegative factorisation of the dataset such that

• Nonnegative coefficients, nonnegative basis

• Basis of ‘qualitative features’  of the data (cf. PCA/SVD, VQ)

xWh =

• Use NNBM on the set of hidden layer coefficients, to learn the
valid coactivations of basis features (columns of W)

NNBM models correlations
within the basis coefficients
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• NMF Basis for database of face images
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• Compare NNBM performance, with (unrectified) Gaussian in learning
correlations between NMF coefficients

b) Samples from Gaussian Fit to the data.a) Samples from NNBM distribution,
trained on human faces.

• Sampling from the NNBM model generates more plausible prototypes, as
compared with samples from the unimodal Gaussian fit to the data.
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• View of Boltzmann Machines as learning a probabilistic model for
binary data

• Bounding to the nonnegative orthant makes drastic changes to the
maximum entropy model for the data - NNBD

• The NNBM describes the framework for maximum-likelihood
learning of the NNBD for a given set of data

• Efficient (but still slow) MCMC can be implemented to sample the
NNBD, Naive Mean-Field theory fails

• The high-temperature expansion allows corrections of arbitrarily
high order and may lead to deterministic NNBM learning

• Under simple assumptions the AMFT can be applied to
computation with hidden units

• Work continues in transforming the NNBM into a useable and
interpretable model for continuous nonnegative data
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• High-dimensional application using advanced mean-field
theory - inferring super-resolution images

• Interpretable nonnegative feature extraction under the
NNBD as probabilistic model (cf. Gaussian model for PCA)

• Application with Hidden Units

• Linear Response Theory (with Bert Kappen)

• Mixed-constraint latent variable models (with David Barber)

• Additive combination of parts generative models for continuous
data

• Gaussian visible units + NNBD over hidden units (application to
DNA Array data?)

• Learning models via continuous-time dynamics
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