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• Feature extraction - What do we mean?

• Classical approaches to feature extraction

• Principal Components Analysis

• Novel ideas about bounded data

• Nonnegative Features for faces and the yeast cell cycle

• Summary
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• What do we mean by feature extraction?

• Reconstruct a complicated set of data using only
mixtures of a small number of its key features

• Consequences
• for compressing the data

• for understanding the main factors controlling the process
generating it

• To perform this, we must define
• a criterion (empirical or mathematical) for assessing the

‘ importance’  of components of the data to the whole

• how to build these ‘ important’  components of the data into
meaningful features
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• Consider a simple system which has delayed feedback

Delay

1 2 3v v v1 2 3

• The states of the system do not span the whole of the ‘available
space’
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• We view extracting a set of features in terms of learning the
connections in a two-layer neural network

• Mixed activations of the hidden units reconstruct the data

• Assumptions about the hidden units and connections to the
visible layer embody how we expect the features to relate to the
data.

Visible layer

Hidden Layer

W

v1 v5v2 v3 v4
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• Mathematically well-understood
• Hidden layer units are continuous, and Gaussian-distributed

• Visible layer units are Gaussian distributed

• Finds orthogonal directions of maximal variance in the data

• These directions are the eigenvectors of the covariance matrix of
the data
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• Two recent applications of PCA to high-dimensional systems
• Eigenfaces (Atick et. al 1996)

Eigenvalues for the first 20
Principal Components
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• Eigengenes (Alter et. al. 2000)

• The analysis tends to capture the smoothly-varying components of the data

• Travelling waves of activation of the eigengenes throughout the cycle
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Eigengenes for the Yeast Cell-Cycle

169 YCK3   CELL PROLIFERATION       PLASMA MEMBRANE-BOUND CASEIN KINASE I
408 PCL6   CELL CYCLE               CYCLIN (PHO85P)
549 VPS15  VACUOLAR PROTEIN TARGETI SER/THR PROTEIN KINASE
733 MSR1   PROTEIN SYNTHESIS        ARGINYL-TRNA SYNTHETASE

1770 FIG1   MATING                   EXTRACELLULAR INTEGRAL MEMBRANE PROTEIN
1952 NUP1   NUCLEAR PROTEIN TARGETIN NUCLEAR PORE PROTEIN

Threshold
max

minmax >−
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• Data which is continuous, but bounded does not conform well to
the Gaussian PCA model of  Mean ± Eigenvectors of Covariance
Matrix

• The natural distribution for nonnegative data can have multiple
peaks

(Downs, Lee & MacKay 2000)
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(Lee & Seung 1999)
• Learns a set of nonnegative features which additively reconstruct

the data
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(Lee & Seung 1999)
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• Since the system (levels of gene expression) is inherently nonnegative we
expect the NMF to be a more informative model

• We only look at genes exhibiting ‘switching’  behaviour
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NMF Basis for the Yeast Cell Cycle
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• We can project the data onto these reduced data, to see when
each ‘gene feature’  is most strongly expressed during the cycle.

Time variation of expression of each ‘ feature’
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• Brief indication of what feature-extraction is all about

• Common models can be viewed in terms of (artificial) neural
networks

• Described PCA in terms of a Gaussian model for the data

• Seen recent work showing Eigenfaces and Eigengenes

• Important distinction between bounded and unbounded
(nonnegative) data

• Demonstrated the NMF on faces and on feature-finding in the yeast
cell-cycle

• Work continues in trying to describe nonnegative feature extraction
in terms of an interpretable probabilistic model (potentially the
NNBM).


